Effects of low-frequency stimulation of the superior colliculus on spontaneous and visually guided saccades.
نویسندگان
چکیده
1. The first experiment of this study determined the effects of low-frequency stimulation of the monkey superior colliculus on spontaneous saccades in the dark. Stimulation trains, subthreshold for eliciting short-latency fixed-vector saccades, were highly effective at biasing the metrics (direction and amplitude) of spontaneous movements. During low-frequency stimulation, the distribution of saccade metrics was biased toward the direction and amplitude of movements induced by suprathreshold stimulation of the same collicular location. 2. Low-frequency stimulation biased the distribution of saccade metrics but did not initiate movements. The distribution of intervals between stimulation onset and the onset of the next saccade did not differ significantly from the distribution of intervals between an arbitrary point in time and the onset of the next saccade under unstimulated conditions. 3. Results of our second experiment indicate that low-frequency stimulation also influenced the metrics of visually guided saccades. The magnitude of the stimulation-induced bias increased as stimulation current or frequency was increased. 4. The time course of these effects was analyzed by terminating stimulation immediately before, during, or after visually guided saccades. Stimulation trains terminated at the onset of a movement were as effective as stimulation trains that continued throughout the movement. No effects were observed if stimulation ended 40-60 ms before the movement began. 5. These results show that low-frequency collicular stimulation can influence the direction and amplitude of spontaneous or visually guided saccades without initiating a movement. These data are compatible with the hypothesis that the collicular activity responsible for specifying the horizontal and vertical amplitude of a saccade differs from the type of collicular activity that initiates a saccade.
منابع مشابه
Effects of local nicotinic activation of the superior colliculus on saccades in monkeys.
To examine the role of competitive and cooperative neural interactions within the intermediate layer of superior colliculus (SC), we elevated the basal SC neuronal activity by locally injecting a cholinergic agonist nicotine and analyzed its effects on saccade performance. After microinjection, spontaneous saccades were directed toward the movement field of neurons at the injection site (affect...
متن کاملContext-dependent effects of substantia nigra stimulation on eye movements.
In a series of now classic experiments, an output structure of the basal ganglia (BG)--the substantia nigra pars reticulata (SNr)--was shown to be involved in the generation of saccades made in particular behavioral contexts, such as when memory was required for guidance. Recent electrophysiological experiments, however, call this original hypothesis into question. Here we test the hypothesis t...
متن کاملEffect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus.
The brain maintains the accuracy of visually guided movements by using visual feedback to correct for changes in the nervous system and musculature that would otherwise result in dysmetria. In monkeys, evidence suggests that an adaptive mechanism can compensate for weakness in an extraocular muscle by changing the gain of the neural signal to the weakened muscle. The visual effects of such neur...
متن کاملComponent stretching during oblique stimulation-evoked saccades: the role of the superior colliculus.
1. During oblique visually guided saccades, the peak velocity of each component is reduced from what it would be for a purely horizontal or vertical saccade of the same amplitude, and the durations of the components are prolonged. We tested predictions of two competing accounts of the neural basis of this "component stretching" phenomenon. Using a recent experimental approach, we electrically s...
متن کاملJocrml of Neurophysiology
1. In early local feedback models for controlling horizontal saccade amplitude, a feedback signal of instantaneous eye position is continuously subtracted from a reference signal of desired eye position at a comparator. The output of the comparator is dynamic motor error, the remaining distance the eyes must rotate to reach the saccadic goal. When feedback reduces dynamic motor error to zero, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 69 3 شماره
صفحات -
تاریخ انتشار 1993